Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Commun ; 15(1): 2972, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582942

RESUMO

Adaptation to a change of environment is an essential process for survival, in particular for parasitic organisms exposed to a wide range of hosts. Such adaptations include rapid control of gene expression through the formation of membraneless organelles composed of poly-A RNA and proteins. The African trypanosome Trypanosoma brucei is exquisitely sensitive to well-defined environmental stimuli that trigger cellular adaptations through differentiation events that characterise its complex life cycle. The parasite has been shown to form stress granules in vitro, and it has been proposed that such a stress response could have been repurposed to enable differentiation and facilitate parasite transmission. Therefore, we explored the composition and positional dynamics of membraneless granules formed in response to starvation stress and during differentiation in the mammalian host between the replicative slender and transmission-adapted stumpy forms. We find that T. brucei differentiation does not reflect the default response to environmental stress. Instead, the developmental response of the parasites involves a specific and programmed hierarchy of membraneless granule assembly, with distinct components and regulation by protein kinases such as TbDYRK, that are required for the parasite to successfully progress through its life cycle development and prepare for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Mamíferos
2.
PLoS Pathog ; 20(2): e1011889, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38408115

RESUMO

Trypanosomatid parasites undergo developmental regulation to adapt to the different environments encountered during their life cycle. In Trypanosoma brucei, a genome wide selectional screen previously identified a regulator of the protein family ESAG9, which is highly expressed in stumpy forms, a morphologically distinct bloodstream stage adapted for tsetse transmission. This regulator, TbREG9.1, has an orthologue in Trypanosoma congolense, despite the absence of a stumpy morphotype in that parasite species, which is an important cause of livestock trypanosomosis. RNAi mediated gene silencing of TcREG9.1 in Trypanosoma congolense caused a loss of attachment of the parasites to a surface substrate in vitro, a key feature of the biology of these parasites that is distinct from T. brucei. This detachment was phenocopied by treatment of the parasites with a phosphodiesterase inhibitor, which also promotes detachment in the insect trypanosomatid Crithidia fasciculata. RNAseq analysis revealed that TcREG9.1 silencing caused the upregulation of mRNAs for several classes of surface molecules, including transferrin receptor-like molecules, immunoreactive proteins in experimental bovine infections, and molecules related to those associated with stumpy development in T. brucei. Depletion of TcREG9.1 in vivo also generated an enhanced level of parasites in the blood circulation consistent with reduced parasite attachment to the microvasculature. The morphological progression to insect forms of the parasite was also perturbed. We propose a model whereby TcREG9.1 acts as a regulator of attachment and development, with detached parasites being adapted for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Animais , Bovinos , Trypanosoma brucei brucei/fisiologia , Interferência de RNA , Inativação Gênica
3.
Sci Rep ; 14(1): 4158, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378867

RESUMO

Animal African trypanosomiasis (AAT) is a significant food security and economic burden in sub-Saharan Africa. Current AAT empirical and immunodiagnostic surveillance tools suffer from poor sensitivity and specificity, with blood sampling requiring animal restraint and trained personnel. Faecal sampling could increase sampling accessibility, scale, and species range. Therefore, this study assessed feasibility of detecting Trypanosoma DNA in the faeces of experimentally-infected cattle. Holstein-Friesian calves were inoculated with Trypanosoma brucei brucei AnTat 1.1 (n = 5) or T. congolense Savannah IL3000 (n = 6) in separate studies. Faecal and blood samples were collected concurrently over 10 weeks and screened using species-specific PCR and qPCR assays. T. brucei DNA was detected in 85% of post-inoculation (PI) faecal samples (n = 114/134) by qPCR and 50% by PCR between 4 and 66 days PI. However, T. congolense DNA was detected in just 3.4% (n = 5/145) of PI faecal samples by qPCR, and none by PCR. These results confirm the ability to consistently detect T. brucei DNA, but not T. congolense DNA, in infected cattle faeces. This disparity may derive from the differences in Trypanosoma species tissue distribution and/or extravasation. Therefore, whilst faeces are a promising substrate to screen for T. brucei infection, blood sampling is required to detect T. congolense in cattle.


Assuntos
Trypanosoma brucei brucei , Trypanosoma congolense , Trypanosoma , Tripanossomíase Africana , Humanos , Bovinos , Animais , Trypanosoma brucei brucei/genética , Trypanosoma congolense/genética , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/veterinária , Tripanossomíase Africana/epidemiologia , Trypanosoma/genética , DNA , Fezes
4.
Proc Natl Acad Sci U S A ; 120(42): e2306848120, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37824530

RESUMO

The development of Trypanosoma brucei in its mammalian host is marked by a distinct morphological change as replicative "slender" forms differentiate into cell cycle arrested "stumpy" forms in a quorum-sensing-dependent manner. Although stumpy forms dominate chronic infections at the population level, the proportion of replicative parasites at the individual cell level and the irreversibility of arrest in the bloodstream are unclear. Here, we experimentally demonstrate that developmental cell cycle arrest is definitively irreversible in acute and chronic infections in mice. Furthermore, analysis of replicative capacity and single-cell transcriptome profiling reveal a temporal hierarchy, whereby cell cycle arrest and appearance of a reversible stumpy-like transcriptome precede irreversible commitment and morphological change. Unexpectedly, we show that proliferating parasites are exceptionally scarce in the blood after infections are established. This challenges the ability of bloodstream trypanosomes to sustain infection by proliferation or antigenic variation, these parasites instead being overwhelmingly adapted for transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Humanos , Camundongos , Animais , Infecção Persistente , Trypanosoma brucei brucei/metabolismo , Mamíferos , Perfilação da Expressão Gênica
5.
Elife ; 122023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166108

RESUMO

African trypanosomes proliferate as bloodstream forms (BSFs) and procyclic forms in the mammal and tsetse fly midgut, respectively. This allows them to colonise the host environment upon infection and ensure life cycle progression. Yet, understanding of the mechanisms that regulate and drive the cell replication cycle of these forms is limited. Using single-cell transcriptomics on unsynchronised cell populations, we have obtained high resolution cell cycle regulated (CCR) transcriptomes of both procyclic and slender BSF Trypanosoma brucei without prior cell sorting or synchronisation. Additionally, we describe an efficient freeze-thawing protocol that allows single-cell transcriptomic analysis of cryopreserved T. brucei. Computational reconstruction of the cell cycle using periodic pseudotime inference allowed the dynamic expression patterns of cycling genes to be profiled for both life cycle forms. Comparative analyses identify a core cycling transcriptome highly conserved between forms, as well as several genes where transcript levels dynamics are form specific. Comparing transcript expression patterns with protein abundance revealed that the majority of genes with periodic cycling transcript and protein levels exhibit a relative delay between peak transcript and protein expression. This work reveals novel detail of the CCR transcriptomes of both forms, which are available for further interrogation via an interactive webtool.


Assuntos
Trypanosoma , Trypanosoma/citologia , Trypanosoma/crescimento & desenvolvimento , Trypanosoma/metabolismo , Análise da Expressão Gênica de Célula Única , Criopreservação , RNA de Protozoário/análise , Proteínas de Protozoários/análise
6.
Virulence ; 14(1): 2150445, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36419235

RESUMO

African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.


Assuntos
Trypanosoma , Tripanossomíase Africana , Tripanossomíase , Moscas Tsé-Tsé , Animais , Humanos , Tripanossomíase Africana/parasitologia , Virulência , Moscas Tsé-Tsé/parasitologia , Mamíferos
7.
Elife ; 112022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36169304

RESUMO

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.


Assuntos
Trypanosoma brucei brucei , Cromatina/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferases/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superfície de Trypanosoma/genética
8.
Trends Parasitol ; 38(11): 950-961, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36075845

RESUMO

Trypanosomatid parasitic protozoa are divergent from opisthokont models and have evolved unique mechanisms to regulate their complex life cycles and to adapt to a range of hosts. Understanding how these organisms respond, adapt, and persist in their different hosts could reveal optimal drug-control strategies. Protein kinases are fundamental to many biological processes such as cell cycle control, adaptation to stress, and cellular differentiation. Therefore, we have focused this review on the features and functions of protein kinases that distinguish trypanosomatid kinomes from other eukaryotes. We describe the latest research, highlighting similarities and differences between two groups of trypanosomatid parasites, Leishmania and African trypanosomes.


Assuntos
Leishmania , Trypanosoma , Animais , Leishmania/metabolismo , Estágios do Ciclo de Vida , Proteínas Quinases/metabolismo , Trypanosoma/metabolismo
9.
Nat Commun ; 13(1): 3322, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680928

RESUMO

Trypanosomes causing African sleeping sickness use quorum-sensing (QS) to generate transmission-competent stumpy forms in mammalian hosts. This density-dependent process is signalled by oligopeptides that stimulate the signal transduction pathway leading to stumpy formation. Here, using mass spectrometry analysis, we identify peptidases released by trypanosomes and, for 12 peptidases, confirm their extracellular delivery. Thereafter, we determine the contribution of each peptidase to QS signal production using systematic inducible overexpression in vivo, and confirm this activity operates through the physiological QS signalling pathway. Gene knockout of the QS-active peptidases identifies two enzymes, oligopeptidase B and metallocarboxypeptidase 1, that significantly reduce QS when ablated individually. Further, combinatorial gene knockout of both peptidases confirms their dominance in the generation of the QS signal, with peptidase release of oligopeptidase B mediated via an unconventional protein secretion pathway. This work identifies how the QS signal driving trypanosome virulence and transmission is generated in mammalian hosts.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Tripanossomíase Africana , Animais , Mamíferos , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Percepção de Quorum/genética , Trypanosoma brucei brucei/metabolismo
10.
Front Vet Sci ; 9: 868912, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35450136

RESUMO

Animal trypanosomiasis (AT) is a significant livestock disease, affecting millions of animals across Sub-Saharan Africa, Central and South America, and Asia, and is caused by the protozoan parasites Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, with the largest economic impact in cattle. There is over-reliance on presumptive chemotherapy due to inadequate existing diagnostic tests, highlighting the need for improved AT diagnostics. A small RNA species, the 7SL sRNA, is excreted/secreted by trypanosomes in infected animals, and has been previously shown to reliably diagnose active infection. We sought to explore key properties of 7SL sRNA RT-qPCR assays; namely, assessing the potential for cross-reaction with the widespread and benign Trypanosoma theileri, directly comparing assay performance against currently available diagnostic methods, quantitatively assessing specificity and sensitivity, and assessing the rate of decay of 7SL sRNA post-treatment. Results showed that the 7SL sRNA RT-qPCR assays specific for T. brucei, T. vivax, and T. congolense performed better than microscopy and DNA PCR in detecting infection. The 7SL sRNA signal was undetectable or significantly reduced by 96-h post treatment; at 1 × curative dose there was no detectable signal in 5/5 cattle infected with T. congolense, and in 3/5 cattle infected with T. vivax, with the signal being reduced 14,630-fold in the remaining two T. vivax cattle. Additionally, the assays did not cross-react with T. theileri. Finally, by using a large panel of validated infected and uninfected samples, the species-specific assays are shown to be highly sensitive and specific by receiver operating characteristic (ROC) analysis, with 100% sensitivity (95% CI, 96.44-100%) and 100% specificity (95% CI, 96.53-100%), 96.73% (95% CI, 95.54-99.96%) and 99.19% specificity (95% CI, 92.58-99.60%), and 93.42% (95% CI, 85.51-97.16% %) and 82.43% specificity (95% CI, 72.23-89.44% %) for the T brucei, T. congolense and T. vivax assays, respectively, under the conditions used. These findings indicate that the 7SL sRNA has many attributes that would be required for a potential diagnostic marker of AT: no cross-reaction with T. theileri, high specificity and sensitivity, early infection detection, continued signal even in the absence of detectable parasitaemia in blood, and clear discrimination between infected and treated animals.

11.
Biol Open ; 11(4)2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35373253

RESUMO

Trypanosoma theileri, a non-pathogenic parasite of bovines, has a predicted surface protein architecture that likely aids survival in its mammalian host. Their surface proteins are encoded by genes which account for ∼10% of their genome. A non-pathogenic parasite of sheep, Trypanosoma melophagium, is transmitted by the sheep ked and is closely related to T. theileri. To explore host and vector specificity between these species, we sequenced the T. melophagium genome and transcriptome and an annotated draft genome was assembled. T. melophagium was compared to 43 kinetoplastid genomes, including T. theileri. T. melophagium and T. theileri have an AT biased genome, the greatest bias of publicly available trypanosomatids. This trend may result from selection acting to decrease the genomic nucleotide cost. The T. melophagium genome is 6.3Mb smaller than T. theileri and large families of proteins, characteristic of the predicted surface of T. theileri, were found to be absent or greatly reduced in T. melophagium. Instead, T. melophagium has modestly expanded protein families associated with the avoidance of complement-mediated lysis. We propose that the contrasting genomic features of these species is linked to their mode of transmission from their insect vector to their mammalian host. This article has an associated First Person interview with the first author of the paper.


Assuntos
Dípteros , Trypanosoma , Animais , Bovinos , Dípteros/parasitologia , Genômica , Humanos , Insetos Vetores/parasitologia , Mamíferos , Filogenia , Ovinos , Trypanosoma/genética
12.
Elife ; 112022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103595

RESUMO

Schuster et al. make the important observation that small numbers of trypanosomes can infect tsetse flies, and further argue that this can occur whether the infecting parasites are developmentally 'slender' or 'stumpy'(Schuster et al., 2021). We welcome their careful experiments but disagree that they require a rethink of the trypanosome life-cycle. Instead, the study reveals that stumpy forms are more likely to successfully infect flies, the key limit on parasite transmission, and we predict this advantage would be greatly amplified in tsetse infections in the field. Further, we argue that stumpy forms are defined by a suite of molecular adaptations for life-cycle progression, with morphology being a secondary feature. Finally, their dominance in chronic infections means most natural tsetse infections would involve stumpy forms, even in small numbers. Our interpretation does not require re-evaluation of the obligatory life cycle of the parasite, where stumpy forms are selected to sustain transmission.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Moscas Tsé-Tsé , Adaptação Fisiológica , Animais , Estágios do Ciclo de Vida
13.
Proc Biol Sci ; 289(1967): 20212155, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35042410

RESUMO

Laboratory studies of pathogens aim to limit complexity in order to disentangle the important parameters contributing to an infection. However, pathogens rarely exist in isolation, and hosts may sustain co-infections with multiple disease agents. These interact with each other and with the host immune system dynamically, with disease outcomes affected by the composition of the community of infecting pathogens, their order of colonization, competition for niches and nutrients, and immune modulation. While pathogen-immune interactions have been detailed elsewhere, here we examine the use of ecological and experimental studies of trypanosome and malaria infections to discuss the interactions between pathogens in mammal hosts and arthropod vectors, including recently developed laboratory models for co-infection. The implications of pathogen co-infection for disease therapy are also discussed.


Assuntos
Coinfecção , Malária , Parasitos , Trypanosoma , Animais , Interações Hospedeiro-Parasita , Mamíferos
14.
Nat Commun ; 12(1): 5268, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-34489460

RESUMO

Developmental steps in the trypanosome life-cycle involve transition between replicative and non-replicative forms specialised for survival in, and transmission between, mammalian and tsetse fly hosts. Here, using oligopeptide-induced differentiation in vitro, we model the progressive development of replicative 'slender' to transmissible 'stumpy' bloodstream form Trypanosoma brucei and capture the transcriptomes of 8,599 parasites using single cell transcriptomics (scRNA-seq). Using this framework, we detail the relative order of biological events during asynchronous development, profile dynamic gene expression patterns and identify putative regulators. We additionally map the cell cycle of proliferating parasites and position stumpy cell-cycle exit at early G1 before progression to a distinct G0 state. A null mutant for one transiently elevated developmental regulator, ZC3H20 is further analysed by scRNA-seq, identifying its point of failure in the developmental atlas. This approach provides a paradigm for the dissection of differentiation events in parasites, relevant to diverse transitions in pathogen biology.


Assuntos
Proteínas de Protozoários/genética , Trypanosoma brucei brucei/citologia , Trypanosoma brucei brucei/fisiologia , Animais , Ciclo Celular/genética , Ciclo Celular/fisiologia , Regulação da Expressão Gênica , Mutação , Percepção de Quorum , Análise de Sequência de RNA/métodos , Análise de Célula Única , Trypanosoma brucei brucei/genética
15.
Annu Rev Microbiol ; 75: 495-514, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34348028

RESUMO

African trypanosomes are responsible for important diseases of humans and animals in sub-Saharan Africa. The best-studied species is Trypanosoma brucei, which is characterized by development in the mammalian host between morphologically slender and stumpy forms. The latter are adapted for transmission by the parasite's vector, the tsetse fly. The development of stumpy forms is driven by density-dependent quorum sensing (QS), the molecular basis for which is now coming to light. In this review, I discuss the historical context and biological features of trypanosome QS and how it contributes to the parasite's infection dynamics within its mammalian host. Also, I discuss how QS can be lost in different trypanosome species, such as T. brucei evansi and T. brucei equiperdum, or modulated when parasites find themselves competing with others of different genotypes or of different trypanosome species in the same host. Finally, I consider the potential to exploit trypanosome QS therapeutically.


Assuntos
Trypanosoma brucei brucei , Trypanosoma , Animais , Mamíferos , Percepção de Quorum/genética , Transdução de Sinais , Trypanosoma brucei brucei/genética
16.
Genome Res ; 31(11): 2138-2154, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34407985

RESUMO

Nucleosomes composed of histones are the fundamental units around which DNA is wrapped to form chromatin. Transcriptionally active euchromatin or repressive heterochromatin is regulated in part by the addition or removal of histone post-translational modifications (PTMs) by "writer" and "eraser" enzymes, respectively. Nucleosomal PTMs are recognized by a variety of "reader" proteins that alter gene expression accordingly. The histone tails of the evolutionarily divergent eukaryotic parasite Trypanosoma brucei have atypical sequences and PTMs distinct from those often considered universally conserved. Here we identify 65 predicted readers, writers, and erasers of histone acetylation and methylation encoded in the T. brucei genome and, by epitope tagging, systemically localize 60 of them in the parasite's bloodstream form. ChIP-seq shows that 15 candidate proteins associate with regions of RNAPII transcription initiation. Eight other proteins show a distinct distribution with specific peaks at a subset of RNAPII transcription termination regions marked by RNAPIII-transcribed tRNA and snRNA genes. Proteomic analyses identify distinct protein interaction networks comprising known chromatin regulators and novel trypanosome-specific components. Notably, several SET- and Bromo-domain protein networks suggest parallels to RNAPII promoter-associated complexes in conventional eukaryotes. Further, we identify likely components of TbSWR1 and TbNuA4 complexes whose enrichment coincides with the SWR1-C exchange substrate H2A.Z at RNAPII transcription start regions. The systematic approach used provides details of the composition and organization of the chromatin regulatory machinery in T. brucei and establishes a route to explore divergence from eukaryotic norms in an evolutionarily ancient but experimentally accessible eukaryote.


Assuntos
Cromatina , Trypanosoma brucei brucei , Cromatina/genética , Cromatina/metabolismo , Nucleossomos/metabolismo , Mapas de Interação de Proteínas , Proteômica , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
17.
Microb Genom ; 7(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34397347

RESUMO

Trypanosoma brucei evansi and T. brucei equiperdum are animal infective trypanosomes conventionally classified by their clinical disease presentation, mode of transmission, host range, kinetoplast DNA (kDNA) composition and geographical distribution. Unlike other members of the subgenus Trypanozoon, they are non-tsetse transmitted and predominantly morphologically uniform (monomorphic) in their mammalian host. Their classification as independent species or subspecies has been long debated and genomic studies have found that isolates within T. brucei evansi and T. brucei equiperdum have polyphyletic origins. Since current taxonomy does not fully acknowledge these polyphyletic relationships, we re-analysed publicly available genomic data to carefully define each clade of monomorphic trypanosome. This allowed us to identify, and account for, lineage-specific variation. We included a recently published isolate, IVM-t1, which was originally isolated from the genital mucosa of a horse with dourine and typed as T. equiperdum. Our analyses corroborate previous studies in identifying at least four distinct monomorphic T. brucei clades. We also found clear lineage-specific variation in the selection efficacy and heterozygosity of the monomorphic lineages, supporting their distinct evolutionary histories. The inferred evolutionary position of IVM-t1 suggests its reassignment to the T. brucei evansi type B clade, challenging the relationship between the Trypanozoon species, the infected host, mode of transmission and the associated pathological phenotype. The analysis of IVM-t1 also provides, to our knowledge, the first evidence of the expansion of T. brucei evansi type B, or a fifth monomorphic lineage represented by IVM-t1, outside of Africa, with important possible implications for disease diagnosis.


Assuntos
Filogenia , Trypanosoma/classificação , Trypanosoma/genética , Tripanossomíase/parasitologia , África , Animais , Cromossomos , DNA de Cinetoplasto/genética , Genótipo , Cavalos , Polimorfismo de Nucleotídeo Único , Trypanosoma/isolamento & purificação , Trypanosoma brucei brucei/classificação , Trypanosoma brucei brucei/genética , Tripanossomíase/veterinária
18.
PLoS Negl Trop Dis ; 15(4): e0009284, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33909626

RESUMO

The ability to reproduce the developmental events of trypanosomes that occur in their mammalian host in vitro offers significant potential to assist in understanding of the underlying biology of the process. For example, the transition from bloodstream slender to bloodstream stumpy forms is a quorum-sensing response to the parasite-derived peptidase digestion products of environmental proteins. As an abundant physiological substrate in vivo, we studied the ability of a basement membrane matrix enriched gel (BME) in the culture medium to support differentiation of pleomorphic Trypanosoma brucei to stumpy forms. BME comprises extracellular matrix proteins, which are among the most abundant proteins found in connective tissues in mammals and known substrates of parasite-released peptidases. We previously showed that two of these released peptidases are involved in generating a signal that promotes slender-to-stumpy differentiation. Here, we tested the ability of basement membrane extract to enhance parasite differentiation through its provision of suitable substrates to generate the quorum sensing signal, namely oligopeptides. Our results show that when grown in the presence of BME, T. brucei pleomorphic cells arrest at the G0/1 phase of the cell cycle and express the differentiation marker PAD1, the response being restricted to differentiation-competent parasites. Further, the stumpy forms generated in BME medium are able to efficiently proceed onto the next life cycle stage in vitro, procyclic forms, when incubated with cis-aconitate, further validating the in vitro BME differentiation system. Hence, BME provides a suitable in vitro substrate able to accurately recapitulate physiological parasite differentiation without the use of experimental animals.


Assuntos
Membrana Basal/metabolismo , Trypanosoma brucei brucei/crescimento & desenvolvimento , Trypanosoma brucei brucei/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Meios de Cultura , Estágios do Ciclo de Vida , Proteínas de Protozoários/metabolismo , Percepção de Quorum , Trypanosoma brucei brucei/citologia
19.
Parasitology ; 148(10): 1223-1236, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33678213

RESUMO

Kinetoplastid parasites are responsible for both human and animal diseases across the globe where they have a great impact on health and economic well-being. Many species and life cycle stages are difficult to study due to limitations in isolation and culture, as well as to their existence as heterogeneous populations in hosts and vectors. Single-cell transcriptomics (scRNA-seq) has the capacity to overcome many of these difficulties, and can be leveraged to disentangle heterogeneous populations, highlight genes crucial for propagation through the life cycle, and enable detailed analysis of host­parasite interactions. Here, we provide a review of studies that have applied scRNA-seq to protozoan parasites so far. In addition, we provide an overview of sample preparation and technology choice considerations when planning scRNA-seq experiments, as well as challenges faced when analysing the large amounts of data generated. Finally, we highlight areas of kinetoplastid research that could benefit from scRNA-seq technologies.


Assuntos
Perfilação da Expressão Gênica , Kinetoplastida/genética , Análise de Célula Única , Interações Hospedeiro-Parasita , RNA-Seq
20.
Wellcome Open Res ; 5: 219, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33274300

RESUMO

Background: Low-complexity regions (LCRs) on proteins have attracted increasing attention recently due to their role in the assembly of membraneless organelles or granules by liquid-liquid phase separation. Several examples of such granules have been shown to sequester RNA and proteins in an inactive state, providing an important mechanism for dynamic post-transcriptional gene regulation. In trypanosome parasites, post-transcriptional control overwhelmingly dominates gene regulation due to the organisation of their genome into polycistronic transcription units. The purpose of the current study was to generate a substantially more comprehensive genome-wide survey of LCRs on trypanosome proteins than currently available . Methods: Using the Shannon's entropy method, provided in the R package 'entropy', we identified LCRs in the proteome of Trypanosoma brucei. Our analysis predicts LCRs and their positional enrichment in distinct protein cohorts and superimposes on this a range of post-translational modifications derived from available experimental datasets. Results: Our results highlight the enrichment of LCRs in the C-terminal region of predicted nucleic acid binding proteins, these acting as favoured sites for potential phosphorylation. Conclusions: The post-translational modifications of LCRs, and in particular the phosphorylation events, could contribute to post-transcriptional gene expression control and the dynamics of protein targeting to membraneless organelles in kinetoplastid parasites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...